Bilangan adalah suatu konsep matematika yang digunakan untuk pencacahan dan pengukuran. Simbol ataupun lambang yang digunakan untuk mewakili suatu bilangan disebut sebagai angka atau lambang bilangan. Dalam matematika, konsep bilangan selama bertahun-tahun lamanya telah diperluas untuk meliputi bilangan nol, bilangan negatif, bilangan rasional, bilangan irasional, dan bilangan kompleks. Bilangan adalah suatu ide yang bersifat abstrak yang akan memberikan keterangan mengenai banyaknya suatu kumpulan benda. Lambang bilangan biasa dinotasikan dalam bentuk tulisan sebagai angka. Prosedur-prosedur tertentu yang mengambil bilangan sebagai masukan dan menghasil bilangan lainnya sebagai keluran, disebut sebagai operasi numeris. Operasi uner mengambil satu masukan bilangan dan menghasilkan satu keluaran bilangan. Operasi yang lebih umumnya ditemukan adalah operasi biner, yang mengambil dua bilangan sebagai masukan dan menghasilkan satu bilangan sebagai keluaran. Contoh operasi biner adalah penjumlahan, pengurangan, perkalian, pembagian, perpangkatan, dan perakaran. Bidang matematika yang mengkaji operasi numeris disebut sebagai aritmetika.
B. Macam-Macam Bilangan
1. Bilangan Asli
Dalam matematika, terdapat dua kesepakatan mengenai himpunan bilangan asli. Yang pertama definisi menurut matematikawan tradisional, yaitu himpunan bilangan bulat positif yang bukan nol {1, 2, 3, 4, ...}. Sedangkan yang kedua definisi oleh logikawan dan ilmuwan komputer, adalah himpunan nol dan bilangan bulat positif {0, 1, 2, 3, ...}. Bilangan asli merupakan salah satu konsep matematika yg paling sederhana dan termasuk konsep pertama yang bisa dipelajari dan dimengerti oleh manusia, bahkan beberapa penelitian menunjukkan beberapa jenis kera juga bisa menangkapnya.
Wajar apabila bilangan asli adalah jenis pertama dari bilangan yang digunakan untuk membilang, menghitung, dsb. Sifat yang lebih dalam tentang bilangan asli, termasuk kaitannya dengan bilangan prima, dipelajari dalam teori bilangan. Untuk matematika lanjut, bilangan asli dapat dipakai untuk mengurutkan dan mendefinisikan sifat hitungan suatu himpunan.
Setiap bilangan, misalnya bilangan 1, adalah konsep abstrak yg tak bisa tertangkap oleh indera manusia, tetapi bersifat universal. Salah satu cara memperkenalkan konsep himpunan semua bilangan asli sebagai sebuah struktur abstrak adalah melalui aksioma Peano (sebagai ilustrasi, lihat aritmetika Peano).
Konsep bilangan-bilangan yg lebih umum dan lebih luas memerlukan pembahasan lebih jauh, bahkan kadang-kadang memerlukan kedalaman logika untuk bisa memahami dan mendefinisikannya. Misalnya dalam teori matematika, himpunan semua bilangan rasional bisa dibangun secara bertahap, diawali dari himpunan bilangan-bilangan asli.
Asli/Sail adalah himpunan bilangan bulat positif yang bukan nol. Nama lain dari bilangan ini adalah bilangan hitung atau bilangan yang bernilai positif (integer positif).
Contoh: 1,2,3,4,5,6,7,8,….
2.Bilangan Prima
Dalam matematika, bilangan prima adalah bilangan asli yang lebih besar dari 1, yang faktor pembaginya adalah 1 dan bilangan itu sendiri. 2 dan 3 adalah bilangan prima. 4 bukan bilangan prima karena 4 bisa dibagi 2. Sepuluh bilangan prima yang pertama adalah 2, 3, 5, 7, 11, 13, 17, 19, 23 dan 29.
Jika suatu bilangan yang lebih besar dari satu bukan bilangan prima, maka bilangan itu disebut bilangan komposit. Cara paling sederhana untuk menentukan bilangan prima yang lebih kecil dari bilangan tertentu adalah dengan menggunakan saringan Eratosthenes
Secara matematis, tidak ada "bilangan prima yang terbesar", karena jumlah bilangan prima adalah tak terhingga.[1] Bilangan prima terbesar yang diketahui per 2013 adalah 257,885,161 - 1.[2] Bilangan ini mempunyai 17,425,170 digit dan merupakan bilangan prima Mersenne yang ke-48. M57885161 (demikian notasi penulisan bilangan prima Mersenne ke-48) ditemukan oleh Curtis Cooper pada 25 Januari 2013 yang merupakan profesor-profesor dari University of Central Missouri bekerja sama dengan puluhan ribu anggota lainnya dari proyek GIMPS.
Jadi bilangan prima adalah bilangan-bilangan sail/asli yang hanya bisa dibagi dirinya sendiri dan satu, atau bilangan yang memiliki 2 faktor, dan angka satu bukan bilangan prima.
Contoh: 2,3,5,7,11,13,17,….
3.Bilangan Cacah
Bilangan cacah adalah himpunan bilangan bulat yang tidak negatif, yaitu {0, 1, 2, 3 ...}. Dengan kata lain himpunan bilangan asli ditambah 0. Jadi, bilangan cacah harus bertanda positif. Bilangan cacah juga merupakan bilangan bulat positif digabung dengan nol.
Contoh: 0,1,2,3,4,5,6,7,….
4.Bilangan Bulat
1. Bilangan bulat terdiri dari bilangan bulat negatif, nol, dan bilangan bulat positif.
2. Sifat-sifat penjumlahan pada bilangan bulat:
a. Sifat tertutup
Untuk setiap bilangan bulat a dan b, berlaku a + b = c dengan c juga bilangan bulat.
b. Sifat komutatif
Untuk setiap bilangan bulat a dan b, selalu berlaku a + b = b + a.
c. Sifat asosiatif
Untuk setiap bilangan bulat a, b, dan c selalu berlaku (a + b) + c = a + (b + c).
d. Mempunyai unsur identitas
Untuk sebarang bilangan bulat a, selalu berlaku a + 0 = 0 + a. Bilangan nol (0) merupakan unsur identitas pada penjumlahan.
e. Mempunyai invers
Untuk setiap bilangan bulat a, selalu berlaku a + (–a) = (–a) + a = 0. Invers dari a adalah –a, sedangkan invers dari –a adalah a.
3. Jika a dan b bilangan bulat maka berlaku a – b = a + (–b).
4. Operasi pengurangan pada bilangan bulat berlaku sifat tertutup.
5. Jika p dan q bilangan bulat maka
a. p x q = pq;
b. (–p) x q = –(p x q) = –pq;
c. p x (–q) = –(p x q) = –pq;
d. (–p) x (–q) = p x q = pq.
6. Untuk setiap p, q, dan r bilangan bulat berlaku sifat
a. tertutup terhadap operasi perkalian;
b. komutatif: p x q = q x p;
c. asosiatif: (p x q) x r = p x (q x r)
Entri Populer
-
S e l a m a t D a t a n g D i S i t u s A N G K A B O C O R A N T O G E L B e r d i r i D e n g a n S a t u T e k a t Y a i...
-
S e l a m a t D a t a n g D i S i t u s A N G K A B O C O R A N T O G E L B e r d i r i D e n g a n S a t u T e k a t Y a i...
-
S e l a m a t D a t a n g D i S i t u s A N G K A B O C O R A N T O G E L B e r d i r i D e n g a n S a t u T e k a t Y a i...
-
S e l a m a t D a t a n g D i S i t u s A N G K A B O C O R A N T O G E L B e r d i r i D e n g a n S a t u T e k a t Y a i...
-
S e l a m a t D a t a n g D i S i t u s A N G K A B O C O R A N T O G E L B e r d i r i D e n g a n S a t u T e k a t Y a i...
Pengeluaran Angka Togel
Angka Bocoran Singapura
Angka Bocoran Hongkong
Ruang Menu Admin
Arsip Blog
-
▼
14
(70)
-
▼
Agustus
(7)
- Togel.dum.su Data Pengeluaran Togel Singapure 2016...
- Prediksi Togel Singapura Kamis 28 Agustus 2014
- cara Menghilangkan virus Autorun
- Pengertian Bilangan Dan macam-macam Bilangan
- Prediksi Togel Singapura Kamis 27 Agustus 2014
- PREDIKSI SGP AI WAJIB 2D TUNGGAL 8...
- Rumus Togel Yang Sangat Terparcaya Dan Terjamin
-
▼
Agustus
(7)
0 komentar:
Posting Komentar